What Changes Will Zirconia Bring To These Ceramics?

Jun 13 , 2024

Zirconia is an inorganic non-metallic material with superior performance and acid-alkali resistance. It boasts stable chemical properties, a high melting point, low thermal conductivity, hardness, high strength, and wear resistance. Due to its remarkable properties, zirconia and its products have become one of the primary raw materials for structural ceramics, functional ceramics, bioceramics, and thermal barrier coatings, exhibiting broad application prospects in high-tech fields such as military, energy, metallurgy, electronics, communications, automotive, and machinery.

application prospects in high-tech fields

 

The Application of Zirconia as an Additive in Enhancing the Performance of Other Ceramic Materials

I. Impact on Zirconia Ceramics

Nanozirconia exerts a positive influence on the performance of ordinary zirconia products.

By adding different contents of CaO stabilizer to the electrofused monoclinic zirconia raw material, the optimal amount of CaO stabilizer was determined through analyzing the mineral phase composition, apparent porosity, and compressive strength of the samples after firing. Based on the optimal CaO stabilizer addition, nano-zirconia powder was incorporated to investigate its effect on the performance of zirconia products. The results showed that with increasing nano-zirconia powder addition to the optimal sample (3Ca-PSZ), the apparent porosity decreased, the sintering shrinkage rate increased, and the compressive strength improved. Specifically, when the nano-zirconia powder addition ratio reached 8wt%, the sample exhibited a porosity of 9.4%, a bulk density of 5.08g/cm3, and a compressive strength of 381MPa. Compared with the 3Ca-PSZ sample, the porosity decreased by 40%, the bulk density increased by 5%, and the compressive strength improved by 70%.

 

II. Impact on Alumina Ceramics

Al2O3 ceramics are widely used in mechanical, electronic, and chemical industries due to their excellent properties such as high strength, hardness, wear resistance, oxidation resistance, and thermal shock resistance. While pure Al2O3 ceramics exhibit good high-temperature performance, they suffer from insufficient toughness and poor impact resistance, often resulting in minor chipping during cutting. By adding zirconia to the Al2O3 matrix, zirconia-toughened alumina (ZTA) ceramics can significantly improve these issues.

In ZTA ceramics, ZrO2 particles are uniformly dispersed in the Al2O3 matrix. As the temperature changes, ZrO2 particles undergo phase transitions, belonging to the martensitic phase transition, resulting in volumetric expansion and shear strain, leading to the formation of tensile stress and microcracks. Some small-sized ZrO2 particles generate microcracks under tensile stress. These cracks are confined within small-sized grains, and their initiation and propagation consume energy from the external stress field, thereby enhancing the toughness and strength of Al2O3 ceramics. Therefore, ZTA ceramics represent a promising ceramic material.

Zirconia ceramic bearing

 

III. Impact on Silicon Nitride Ceramics

Silicon nitride ceramics are considered the most comprehensive structural ceramic material due to their excellent properties such as high strength, hardness, wear resistance, corrosion resistance, and creep resistance. However, their inherent brittleness hinders their widespread market application. Numerous scholars have studied ZrO2-toughened Si3N4 ceramics and made significant progress.

ZrO2-Si3N4 composite ceramic materials were prepared through pressure-less sintering and characterized using the displacement method, SEM, and DDL110 universal tensile testing machine. The influence of ZrO2 content on the density, microstructure, and mechanical properties of Si3N4 ceramics was investigated. The results indicated that as the ZrO2 content increased, the density of Si3N4 ceramics increased; both flexural strength and fracture toughness initially increased and then decreased. When the ZrO2 content reached 10%, the flexural strength and fracture toughness of Si3N4 reached their maximum values simultaneously, being 362MPa and 7.0MPa·m1/2, respectively.

 

IV. Impact on Aluminum Nitride (AlN) Ceramics

AlN ceramics, renowned for their high thermal conductivity, excellent electrical properties, and low thermal expansion coefficient, are often deemed the ideal material for circuit packaging substrates. However, compared to ceramic materials such as Si3N4 and SiC, AlN ceramics exhibit lower fracture toughness, which compromises their thermal shock resistance and increases the difficulty of machining.

By incorporating nano-ZrO2 powder and utilizing Y2O3 as a sintering aid, AlN ceramics were fabricated through hot-press sintering. The results revealed that the phase composition of the hot-pressed AlN ceramics after adding ZrO2 comprises the primary AlN phase, the Al5Y3O12 grain boundary phase, and a new ZrN phase. With the addition of ZrO2, the Vickers hardness of the hot-pressed AlN ceramics remained largely unchanged, while its fracture toughness gradually improved. This enhancement is primarily attributed to the high-temperature reaction between the added ZrO2 and AlN, resulting in the formation of ZrN. This transformation leads to a shift from a single intergranular fracture mode in AlN ceramics to a mixed fracture mode encompassing both intergranular and transgranular fractures, strengthening the grain boundaries and subsequently improving the fracture toughness.

 

Zirconium oxide plunger

 

Conclusion

In conclusion, the addition of zirconia significantly enhances the performance of various types of ceramics. Whether it be zirconia ceramics themselves, alumina ceramics, silicon nitride ceramics, or aluminum nitride ceramics, the incorporation of an appropriate amount of zirconia effectively improves key properties such as toughness, strength, impact resistance, wear resistance, and corrosion resistance. This transformation not only enhances the practicality of ceramic materials but also broadens their application scope in high-tech fields like military, energy, metallurgy, electronics, telecommunications, automotive, and machinery. Therefore, zirconia, as an essential ceramic additive, plays a significant role in enhancing the comprehensive performance of ceramic materials.

 

 

Categories

FAQ

Although our primary focus is on advanced ceramic materials such as alumina, zirconia, silicon carbide, silicon nitride, aluminum nitride, and quartz ceramics, we are always exploring new materials and technologies. If you have a specific material requirement, please contact us, and we will do our best to fulfill your needs or find suitable partners.

Absolutely. Our technical team possesses profound knowledge of ceramic materials and extensive experience in product design. We are happy to provide you with material selection advice and product design support to ensure optimal performance for your products.

We do not have a fixed minimum order value requirement. We always focus on meeting our customers' needs, and we strive to provide quality service and products regardless of the order size.

In addition to ceramic products, we also provide a range of additional services, including but not limited to: customized ceramic processing services based on your needs, using blanks or semi-finished blanks produced by yourself; if you are interested in outsourced ceramic packaging and metallization services, please contact us for further discussion. We are always committed to providing you with a one-stop solution to meet your various needs.

Yes, we do. No matter where you are located globally, we can ensure the safe and timely delivery of your order.

Send Your inquiry

Upload
* File ONLY PDF/JPG./PNG. Available.
Submit Now

Contact With Us

Contact With Us
Simply fill out the form below as best you can. And don't sweat the details.
Submit
Looking for Video?
Contact Us #
19311583352

Office Hours

  • Monday to Friday: 9:00 AM - 12:00 PM, 2:00 PM - 5:30 PM

Please note that our office hours are based on Beijing Time, which is eight hours ahead of Greenwich Mean Time (GMT). We appreciate your understanding and cooperation in scheduling your inquiries and meetings accordingly. For any urgent matters or queries outside our regular hours, feel free to contact us via email, and we will get back to you as soon as possible. Thank you for your business, and we look forward to serving you.

Home

Products

whatsApp

contact